Our directory of things of interest

University Directory

Explaining the location of Mount St Helens

  • Written by  Chris Fitch
  • Published in Tectonics
Explaining the location of Mount St Helens
13 Nov
The reason for the unusual location of Mount St Helens is becoming clearer

Of all the questions that swirl around the iconic Mount St Helens, which erupted so explosively in May 1980, one of the most curious is also deceptively simple: Why is the volcano situated where it is?

Located in the southwest of Washington state, the main Cascade arc of volcanoes (formed by the subduction of the Juan de Fuca Plate beneath North America over the past 40 million years) is a fairly straight line featuring such peaks as Mount Adams, Mount Rainer and Goat Rocks. ‘St Helens, however, sits about 60km to the west, in a region where scientists don’t expect deep magma to surface,’ explains Paul Bedrosian, research geophysicist at the United States Geological Survey (USGS). ‘Not only is St Helens “out-of-line”, but it is also the most active volcano in the Cascades.’ The reason for this paradox has been historically unclear.

Now, by tracking seismic sound waves and magnetotelluric data (electrical conductivity beneath the surface), USGS and Oregon State University geophysicists have identified a vast underground rock formation – a ‘batholith’ – near the Cascadia arc, that obstructs the rise of magma. ‘Magma in the lower crust is spread out over a relatively wide area – within this broad zone there are places more or less favourable for it to ascend and ultimately erupt,’ says Bedrosian. ‘Below the batholith, where ascent is difficult, magma is deemed to “stall” in the crust. In contrast, where there exist crustal flaws, such as beneath Mount St Helens, magma can ascend more readily.’ Due to what he calls ‘an ancient tectonic scar’ below Mount St Helens, the volcano acts as a release valve on the pressure that builds up beneath the batholith.

Predicting future eruptions – which has generally depended on observations of the bulging dome and earthquake activity that preceded the 1980 event – could be more accurate now, as experts monitor the movement of magma below the surface.

geo line break v3

Free eBooks - Geographical Newsletter

Get the best of Geographical delivered straight to your inbox by signing up to our weekly newsletter and get a free collection of eBooks!

geo line break v3

Related items

NEVER MISS A STORY - Follow Geographical on Social

Want to stay up to date with breaking Geographical stories? Join the thousands following us on Twitter, Facebook and Instagram and stay informed about the world.

More articles in NATURE...


Xavi Bou's artistic visions of flight beguile the eye


Hydropower is considered essential if the world is to reach…


An overlap between populations of grizzly bears and Indigenous groups…


Climate change is having a huge impact on the oceans,…


The first COP26 draft agreement has been released


Marco Magrini explores the complex issue of carbon markets –…


The youth found marching outside the COP26 conference in Glasgow…


Energy day at COP26 was all about coal. Marco Magrini…


The world is reliant on the climate models that forecast…


Geographical editor, Katie Burton, spends the day at COP26: finance…


Lawyers are using the power of the courts to challenge…


Mike Robinson, chief executive of the Royal Scottish Geographical Society…


Will China's climate pledges be enough to achieve Xi Jinping's…